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Abstract

What jumps out in a single glance of an image is dif-
ferent than what you might notice after closer inspection.
Yet conventional models of visual saliency produce predic-
tions at an arbitrary, fixed viewing duration, offering a lim-
ited view of the rich interactions between image content
and gaze location. In this paper we propose to capture
gaze as a series of snapshots, by generating population-
level saliency heatmaps for multiple viewing durations. We
collect the CodeCharts1K dataset, which contains multiple
distinct heatmaps per image corresponding to 0.5, 3, and 5
seconds of free-viewing. We develop an LSTM-based model
of saliency that simultaneously trains on data from multi-
ple viewing durations. Our Multi-Duration Saliency Ex-
cited Model (MD-SEM) achieves competitive performance
on the LSUN 2017 Challenge with 57% fewer parameters
than comparable architectures. It is the first model that
produces heatmaps at multiple viewing durations, enabling
applications where multi-duration saliency can be used to
prioritize visual content to keep, transmit, and render.

1. Introduction

How long an observer has to examine an image deter-
mines what they notice and what tasks they can complete.
Despite this dependency of viewing behavior on viewing
time, most models of visual attention predict saliency at an
arbitrary duration because they are trained on data accumu-
lated over 3 or 5 seconds of viewing [9, 22, 30, 33, 43]. On
the other hand, scanpath models, which predict individual
gaze trajectories over time, struggle to summarize the atten-
tion patterns of a population [2, 3, 27, 42, 53].

∗Equal contribution.

Figure 1: Predictions of our Multi-Duration Saliency Ex-
cited Model at three viewing durations. Images are from
the Abnormal Objects [46], SALICON [33], and Eye-
Crowd [34] datasets (top to bottom). Insets with blue
borders contain human ground truth collected using the
CodeCharts UI.

In this paper, we introduce the concept of multi-
duration saliency, which captures multiple attention snap-
shots corresponding to different viewing durations (Fig. 1)1.
This offers richer insight into how gaze evolves over time
than conventional saliency, while providing a more robust
representation than scanpaths (Fig. 2). We leverage an effi-
cient crowdsourcing methodology for collecting large scale
human attention data at several viewing durations (Fig. 3).
We use it to assemble CodeCharts1K, a dataset of 1000 im-
ages with viewing patterns at three durations: 0.5, 3, and
5 seconds. Our data shows that human gaze patterns are
highly consistent at each viewing duration but can differ
across durations, proving that saliency depends predictably
on viewing duration.

1Data, code, and models available at:
http://multiduration-saliency.csail.mit.edu/
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Figure 2: Multi-duration saliency compared to other gaze
prediction tasks: combining the stability and generalizabil-
ity of a population-level metric with rich temporal data.

To capture this dependency, our multi-duration saliency
model takes an image as input and predicts three distinct
saliency maps for three different durations. This lightweight
model achieves competitive performance when evaluated at
a single duration, and outperforms baseline models trained
to predict multiple durations. We show that the predicted
saliency maps can be used as input to applications such as
image cropping, compression/rendering, and captioning to
tailor them to different contexts based on viewing time.

2. Related work

Crowdsourcing attention: Recent efforts at collecting
large-scale attention data have used interfaces that can be
run remotely, without an eye tracker [11, 33, 37, 38, 41, 45].
Moving-window approaches like SALICON [33] and Bub-
bleView [37] involve using the mouse cursor to inspect
small, bubble-shaped regions of blurred images. While
providing cheap, high-fidelity data, these interfaces have
two downsides: (1) blurring images distorts the visual con-
tent and interferes with feature sizes at different resolu-
tions, and (2) moving the cursor requires a different process
than moving the eyes, which can impact which image re-
gions are explored [37, 52]. The CodeCharts UI [41, 49]
captures attention without distorting the underlying image
or relying on mouse movements. It can account for over
80% of human consistency and outperforms other attention-
capturing interfaces, including BubbleView, at approximat-
ing eye movements [41]. Because it allows for fine-grained
control of image presentation time, we use it to capture
multi-duration attention data.

Saliency modeling: The large-scale attention data cap-
tured using SALICON [33] and BubbleView [37] enabled
training neural network models of saliency (e.g., [11, 22,
30, 43]). The top performers on the MIT Saliency Bench-
mark [9] were trained on SALICON data and have opened
a wide performance gap to the previous, traditional models
of saliency [12]. Driven by such improvements in efficiency
and accuracy, saliency models have found wide use in appli-
cations like image cropping, retargeting, and view-finding

for improved composition [6, 15, 24, 54].
Scanpath modeling: Ground truth saliency maps are

computed by accumulating gaze locations of multiple ob-
servers over a fixed viewing duration, which averages out
paterns in gaze location over time. A complementary ap-
proach to representing and modeling human attention is via
scanpaths: the sequence of gaze locations that an observer
makes on an image over time. Scanpath analysis and model-
ing is complicated by the fact that individual differences are
huge at the level of single gaze locations [3, 39]. This hides
the fact that different permutations of traversing image con-
tent may nevertheless correspond to a similar allocation of
attention to the respective image regions.

How does multi-duration saliency relate to conven-
tional saliency and scanpaths? We propose an interme-
diate representation of attention that maintains the robust-
ness of population-level saliency modeling and the tempo-
ral resolution of scanpaths (Fig. 2). We introduce multi-
duration saliency as a way to snapshot attention at a few
distinct time points. Unlike conventional saliency, multi-
duration saliency accounts for the effect of viewing dura-
tion on gaze patterns and provides insight into how attention
evolves over time. However, in contrast to scanpath pre-
diction, multi-duration saliency is a population-level metric
that produces stable, interpretable, and generalizable atten-
tion heatmaps. This framing addresses questions like: what
content do people prioritize, and what is initially attention
grabbing versus noticeable only after seconds of viewing?

3. Collecting multi-duration saliency
In this section, we introduce a scalable approach to mea-

suring multi-duration saliency that uses a web-based inter-
face as a proxy for eye tracking.

CodeCharts UI: In the CodeCharts methodology [41,
49], participants view an image for 500-5000 millisec-
onds followed by a jittered grid of three-character codes
(“codechart”). They then self-report the first three-character
code they see when the image vanishes (Fig. 3a-c). By con-
struction, participants report the region of the image they
were looking at last. The steps in Fig. 3a-d are repeated
for dozens of images. The task also contains validation tri-
als consisting of randomly placed cropped faces [5], where
we expect the participant to enter a code that overlaps with
the face. To ensure data quality, we filter out participants
who enter nonexistent codes, fail over 25% of validation
images, or look at the same spot repeatedly (more details in
the supplement). We collect 50 gaze points per image per
viewing duration, which produces on average 44 valid gaze
points after filtering. We blur all gaze points (with a Gaus-
sian sigma of 50 pixels) to produce an attention heatmap.

Pilot experiments: We ran an initial experiment with 50
images from the OSIE dataset [55] to analyze differences in
gaze patterns across viewing durations. We collected gaze
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Figure 3: CodeCharts UI task flow. (a) Participants view an image for a duration chosen by the experimenter. (b) A codechart
is briefly flashed on the screen. (c) Participants report the character code they remember looking at last, which indicates where
they were gazing on an image. This repeats for a sequence of images, separated by a fixation cross (d) to re-center gaze.
Validation trials (e) are interspersed among the experimental sequence to check if participants move their gaze as expected.

locations for 6 durations: 0.5, 1, 2, 3, 4, and 5 seconds. At-
tention heatmaps at 0.5, 3, and 5 seconds of viewing were
the most distinct from each other (Fig. 4), so we collect
further data at these 3 durations. Attention heatmaps at 3
seconds most closely matched the ground truth OSIE data,
originally also collected at 3 seconds (Pearson’s CC = .62,
averaged over 50 OSIE images). This further validates the
ability of CodeCharts data to model natural human gaze.

CodeCharts1K: Our collected dataset contains a vari-
ety of image types to provide a broad picture of differences
in attention over time. We used 500 images from SALI-
CON [33], 130 from LaMem [36], 120 from CAT2000 [7]2,
100 from EyeCrowd [34], 100 from a mix of Abnormal Ob-
jects [46] and Out-of-Context Objects [19], and 50 from the
Stanford 40K Actions dataset [56]3. Images were padded
to the same aspect ratio and resized in-browser to fit in a
700 × 1000 pixel window. The task sequence included 6
practice images to pre-screen for attentiveness, 50 dataset
images, and 5 validation trials of faces spaced throughout
the sequence. We used Amazon’s Mechanical Turk and paid
participants at an hourly rate of $10. Data collection cost
$4.90 per image for 150 unique gaze points (50 participants
each at 0.5, 3, and 5 second viewing durations).

What does CodeCharts measure? We conducted an
analysis to understand what aspect of gaze CodeCharts data
captures. We had two hypotheses: CodeCharts approx-
imates either (1) people’s last fixation before the end of
the viewing duration, or (2) all fixations within the view-
ing duration. For 100 images from the CAT2000 Action
category, we used the sequential ground truth eye fixations
and assumed that they were equally distributed within the
5-second viewing interval. We then generated two sets of
ground truth heatmaps by sampling an equal number of
fixations according to our two hypotheses. The similarity
between ground truth and CodeCharts heatmaps best sup-

2Using 100 “Action” [56] and 20 “Low Resolution” [35] images.
3We used action classes that explicitly contained an interaction of a

person and an object, by selecting 10 images each of: shooting an arrow,
throwing a frisby, walking the dog, writing on a board, writing on a book.

Figure 4: CodeCharts gaze locations collected on an OSIE
dataset image at 6 viewing durations (left). The highest cor-
relation with ground truth eye movements (Pearson’s CC)
occurs when the viewing duration was 3 seconds, the same
as the duration used for the eye tracking data collection
(right). For further CodeCharts data collection, we used
viewing durations of 0.5, 3, and 5 seconds, as they were
most distinct from each other.

ported hypothesis 2 (Pearson’s CC of .57 versus .54), which
gives us reason to believe that CodeCharts measures what
was most salient within the entire viewing interval.

4. Data analysis

4.1. Is multi-duration saliency predictable?

To measure whether gaze patterns across participants are
consistent for a given viewing duration, we perform a split-
half consistency analysis on the CodeCharts1K data. We di-
vide participants into two groups, generate a heatmap from
each group’s gaze points, and compute Pearson’s Corre-
lation Coefficient (CC) between the heatmaps. We repeat
this computation over 10 splits of participant data and aver-
age the scores. To measure whether the gaze patterns vary
systematically across durations, we select participants from
different viewing duration conditions.

Saliency is predictable across viewing durations: The
split-half consistency between participants is high across all
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durations (CC=.76 at 0.5 sec, CC=.68 at 3 sec, CC=.67 at
5 sec). While the highest consistency occurs at the briefest
duration [8, 51], consistency remains high across the longer
viewing durations. These findings hold across the image
sets tested (more results in the supplement).

Different things are salient at different durations:
When there are differences in what is salient at different
durations, CC scores between participants viewing an im-
age at the same duration are higher than CC scores between
participants viewing an image at different durations. Gaze
patterns are different between .5 and 3 sec for 51% of im-
ages from CodeCharts1K; 55% of images show differences
between .5 and 5 sec, and 27% of images show differences
between 3 and 5 sec.

These analyses indicate that gaze data collected using
the CodeCharts UI contains a consistent signal at each of
the viewing durations and the signal differs between view-
ing durations. This suggests that saliency is predictable at
different viewing durations, setting the stage for the compu-
tational model in Sec. 5.

4.2. What is salient when?

Things and stuff: We used COCO segmentation
maps [13] of the SALICON images to compute gaze counts
per object class over time. From 0.5 to 3 seconds, gaze fre-
quently moves away from people and towards objects and
furniture (e.g., paper, bottle, table). From 3 to 5 seconds,
there is an increase in attention on “stuff” (like grass, carpet,
and road) that may contain other objects. At these longer
durations people gaze more at small and distant objects.

Faces: We know that gaze is attracted by faces [12, 14].
For a finer-grained analysis, we ran a face detection net-
work [26] over images in CodeCharts1K. Across the 266
images where faces were detected, we computed a measure
of face saliency at different durations. At each duration, we
counted all the gaze points that land on a face region and
normalized by the number of gaze points per image across
all 3 durations, so face saliency ranges between 0 and 1.
Fig. 5a plots face saliency as a function of viewing dura-
tion for each image. Across CodeCharts1K, we find a dom-
inant “boomerang” pattern (found in 33% of images with
faces): people notice faces at 0.5 sec, their gaze shifts else-
where at 3 sec, and returns to faces at 5 sec. The second
most prevalent pattern is a decrease in gaze on faces over
time (24%). Other patterns, like an increase in face saliency
over time, were in the minority. These observations are con-
sistent with the phenomenon known as inhibition of return
(IOR) [31, 47], or the relative suppression of visual cues
that were recently attended to. Samuel and Kat [50] found
that IOR lasts for approximately 3 seconds, which might ex-
plain why attention tends to shift away from faces between
0.5 and 3 sec but often returns to faces at 5 sec.

Qualitatively, human gaze frequently moves from the ac-

Figure 5: Dominant patterns of human gaze on faces across
time. (a) Individual lines plot how the saliency of faces
within an image varies across viewing durations. Thicker
lines (labeled) are averages over the dominant patterns.
We include the percent of images that follow each pattern.
(b) Examples where face saliency decreases from 0.5 to 3
sec, increasing again from 3 to 5 sec (“boomerang”). (c) Ex-
amples where face saliency decreases from 0.5 to 5 sec.

tor (at 0.5 sec) to the action (at 3 and 5 sec). Sometimes this
shift in attention is gradual: saliency at 3 sec is a combina-
tion of saliency at 0.5 and 5 sec (Fig. 5c). In other cases,
saliency at 5 sec is more similar to that at 0.5 sec; in these
cases it seems that people explore an image before returning
to the most interesting regions (Fig. 5b).

5. Modeling multi-duration saliency
To efficiently and accurately predict multiple saliency

maps for a single image, we introduce the Multi-Duration
Saliency Excited Model (MD-SEM), a novel architecture
designed for multi-duration saliency (Fig. 6). MD-SEM is
the first model that outputs multiple saliency maps corre-
sponding to different viewing durations. The core of our
model is a new Temporal Excitation Module (TEM) that
applies a time-based re-weighting to saliency feature maps
with a minimal increase in parameters. We also design a
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Figure 6: Architecture of our Multi-Duration Saliency Excited Model (MD-SEM). The encoder outputs compressed feature
maps that are fed to the Temporal Excitation Module (TEM). In order to predict saliency across durations, TEM uses LSTM
cells to generate scaling vectors that re-weight the feature maps differently for each duration. The modified feature maps are
then decoded into saliency heatmaps. Reused features and shared weights keep the architecture lightweight.

new loss, the Correlation Coefficient Match (CCM) loss,
that encourages the network to capture temporal patterns.

5.1. Architecture motivation

Current saliency architectures tend to be bulky, with
large numbers of parameters and specialized modules. For
instance, the Saliency Attentive Model (SAM) [22] uses an
Attentive Convolutional LSTM and a Learned Prior mod-
ule with several 5x5 convolutions, bringing the total model
size to more than 70M parameters. CASNet [25], which
applies channel reweighting over 1024 channels, has 142M
parameters. We present an accurate model of reduced size
and complexity by distilling the required components to a
minimum: (1) a strong Xception-based encoder [20], (2) a
temporal processing module that operates on a compressed
representation, and (3) a simple regularized decoder.

5.2. Convolutional encoder-decoder

Convolutional encoder-decoder architectures are partic-
ularly effective for image-to-image tasks like segmenta-
tion [4, 16, 40] and saliency prediction [11, 32, 43]. Encod-
ing the image allows for rich feature extraction and reduces
the dimensionality of the input. We use a state-of-the-art
backbone as our encoder: the Xception network [20] pre-
trained on ImageNet. The Xception network is lightweight
and accurate (0.790 top-1 accuracy on ImageNet with only
22M parameters) and has shown success in semantic seg-
mentation [17]. For the decoder, our experiments showed
that a simple module composed of 3 sets of convolution,
up-sampling and dropout layers are sufficient for this task.
This choice of module reduces model complexity and im-
plicitly regularizes the network.

5.3. Temporal Excitation Module

To predict multi-duration saliency, we introduce a mod-
ule that recursively manipulates the feature representation
generated by the encoder to adapt it for each duration. Our
module uses a Long Short Term Memory (LSTM) network
to generate scaling vectors that re-weight the feature maps
differently for each of T timesteps (where T = 3 in our im-
plementation). Feature map re-weighting has been explored
in the form of Squeeze and Excitation Modules [29], but has
not been exploited as a temporal modification tool.

The architecture of the Temporal Excitation Module
(TEM) is shown in Fig. 6. First, the feature maps generated
by the encoder are pooled through global average pooling
and passed through a fully connected layer, which reduces
the dimensionality of the feature vector and aids in general-
ization. The output of the dense layer is replicated T times
and fed as a sequence to the LSTM. The LSTM then out-
puts T vectors, which contain information specific to each
timestep and will be used to rescale each feature map dif-
ferently. These vectors are passed through a fully-connected
layer that increases their dimensionality to match the chan-
nel dimension of the feature maps (C), yielding scaling vec-
tors s(t) of length C. A sigmoid non-linearity ensures that
the scaling weights remain within a sensible range. Finally,
the block outputs a set of T feature maps, which are ob-
tained by rescaling the original feature maps according to
each of the T vectors s. Formally, the module outputs T
sets of C feature maps, where each feature map f (t)c is com-
puted as:

f (t)c = Ic · s(t)c ,
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where Ic is the c-th input feature map and s(t)c is the scaling
weight for duration t and channel c.

Efficiency: TEM is designed to be lightweight. TEM’s
LSTM operates over a squeezed, low-dimensional vector
obtained from pooling input feature maps. By contrast,
SAM [22], a top-performing saliency model, uses an LSTM
for internal map refinement that operates on full 3D feature
maps. Our approach results in an architecture with 30 mil-
lion parameters, 57% smaller than SAM [22]. In Sec. 6.3,
we show that our architecture outperforms SAM.

5.4. Correlation Coefficient Match Loss

To ensure that our network correctly captures differences
across viewing durations, we introduce a novel training loss
called Correlation Coefficient Match (CCM) loss. This loss
forces the network to output saliency maps that reproduce
the correlations between ground truth saliency maps at ad-
jacent durations. If ground truth maps at durations t and
t + 1 are dissimilar, we encourage the network to produce
equally dissimilar maps at these durations. Given a set of
T viewing durations for which we want to predict saliency
maps, we calculate the CCM loss by computing Pearson’s
Correlation Coefficient (CC) on pairs of saliency maps at
adjacent durations, then computing the difference between
the ground truth and predicted scores. CC is defined as:
CC(y1, y2) = σ(y1,y2)

σ(y1)·σ(y2) , where σ(y1, y2) is the covari-

ance of y1 and y2. If we let y(t) be the heatmap correspond-
ing to duration t, our CCM loss is:

LCCM (yg, yp) =

1

T − 1

T−1∑
t=0

∣∣∣CC(y(t)g , y(t+1)
g

)
− CC

(
y(t)p , y(t+1)

p

)∣∣∣
where y(t)g and y(t)p are the ground truth and predicted

saliency maps for duration t, respectively.
This novel loss boosts performance on multi-duration

saliency prediction, increasing the NSS score of MD-SEM
by nearly 5% on CodeCharts1K (see the supplement for de-
tailed numbers).

5.5. Implementation details

Architecture: We remove the last fully connected layer
from the Xception decoder in order to obtain a feature map
of size H ×W × 2048. TEM contains a 512-unit fully con-
nected layer, followed by an LSTM with 512 cells, a ReLU
non-linearity, and a sigmoid-activated fully connected layer
with 2048 parameters to transform the scaling vector back
to its input size. The decoder is composed of 3 sets of con-
volutional blocks with Dropout. Finally, a 1x1 convolution
with 1 filter is used to reduce the final set of feature maps
to a single-channel saliency heatmap. Note that the same
decoder is applied to each of the T outputs of TEM, thus

concentrating time information exclusively in that module
and reducing model complexity.

Loss: The network’s loss is a weighted combination of
our novel CCM loss, Kullback Leibler divergence (KL),
Pearson’s Correlation Coefficient (CC) and Normalized
Scanpath Saliency (NSS) (see [10] for formulations). Since
NSS is more robust than other metrics at measuring the
quality of saliency predictions [10], we place a higher
weight on NSS. We set the weights to 3 for CCM, 10 for
KL, -5 for CC and -10 for NSS during SALICON-MD
training (Sec. 6.1), but changed the NSS weight to -1 for
CodeCharts1K training to account for the reduction in the
number of fixations per image.

6. Evaluation
6.1. Datasets

For training, we use the SALICON-MD (Multi-
Duration) and CodeCharts1K datasets. We created
SALICON-MD from the original SALICON dataset [33]
by bucketing a participant’s attention locations based on
when they occurred. Since no timestamps were provided,
we assumed an even distribution across the viewing dura-
tion (from 0 to 5 seconds) and split the attention locations
into 6 buckets. This time-bucketed data serves as an approx-
imate but large pretraining dataset. For final training and
evaluation, we use ground truth multi-duration data from
CodeCharts1K (introduced in Sec. 3).

6.2. Training details

Our training scheme takes advantage of both datasets
to create a model that is generalizable and accurate at ev-
ery duration. In order to learn from as much data as pos-
sible, we pretrain on SALICON-MD. Pretraining on tem-
poral data that exhibits differences across durations is im-
portant so that our model learns at the outset to discrimi-
nate between timesteps. We then fine-tune on ground truth
CodeCharts1K. For both datasets, we set the batch size to 8
and the initial learning rate to 1e-4, which is reduced by a
factor of ten every three epochs. At the beginning of train-
ing we freeze the weights of the encoder for one epoch. We
found that 10 epochs of training on SALICON-MD and
5 on CodeCharts1K was sufficient. For SALICON-MD,
we used the provided test, train, and validation splits. For
CodeCharts1K, we trained on 70% of the images, validated
on 5%, and tested on 25%.

6.3. Comparison to state-of-the-art

Multi-duration baselines: Our model is first-of-its-kind
in its ability to predict saliency at multiple durations. To
demonstrate the superiority of our model over existing
single-duration models, we compare to a baseline that rep-
resents the best alternative for obtaining multiple distinct
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500ms 3000ms 5000ms All durations
Model Params ↓ CC ↑ NSS ↑ KL ↓ CC ↑ NSS ↑ KL ↓ CC ↑ NSS ↑ KL ↓ CC ↑ NSS ↑ KL ↓

SAM ×3 210.3M 0.804 3.236 0.366 0.693 2.409 0.545 0.706 2.480 0.537 0.734 2.708 0.483
SAM-MD 70.1M 0.805 3.181 0.370 0.738 2.541 0.469 0.715 2.495 0.535 0.753 2.739 0.458
MD-SEM 30.9M 0.816 3.374 0.351 0.745 2.694 0.452 0.734 2.677 0.487 0.765 2.915 0.430

Table 1: Comparison of multi-duration saliency models evaluated on CodeCharts1K. Baselines are SAM×3 (three copies of
SAM, each trained exclusively on data for one duration) and SAM-MD (a custom modification of SAM whose LSTM outputs
multiple maps). MD-SEM (ours) excels across all three viewing durations, while using substantially fewer parameters.

Model NSS ↑ CC ↑ KL ↓ SIM ↑
SAM-res [22] 1.990 0.899 0.610 0.793
EML-Net [32] 2.050 0.886 0.520 0.780
SalNet [44] 1.859 0.622 - -
CEDNS 2.045 0.862 1.026 0.753
MD-SEM (Ours) 2.058 0.868 0.568 0.774

Table 2: Comparison to state-of-the-art on SALICON test
set (LSUN 2017 Challenge).

saliency heatmaps: training multiple copies of a state-of-
the-art architecture on the ground truth for 3 different dura-
tions. We call this approach SAM×3. Next, to demonstrate
the advantages of our particular architecture, we bench-
mark against SAM-MD, a modified, multi-duration version
of SAM where the LSTM is modified to produce a differ-
ent saliency map at each timestep. Each output map cor-
responds to a different viewing duration and the network
trains on all three durations simultaneously. The results
of these comparisons on all three CodeCharts durations are
shown in Table 1. Not only is MD-SEM better at approx-
imating human gaze and differentiating across durations,
but it also uses many fewer parameters than the other mod-
els. Our model performs particularly well on images from
LaMem and CAT2000, but struggles on images with out-of-
context objects or complex actions (see the supplement).

Single-duration baselines: We also evaluated our ar-
chitecture on the conventional single-duration saliency task
and obtained a performance competitive with state-of-the-
art saliency models. MD-SEM achieves a second-place
NSS score on the LSUN 2017 challenge [1] (Table 2).

Qualitatively, our model accurately reproduces many of
the dominant human gaze patterns from the CodeCharts1K
dataset, such as the tendency of humans to focus on the ob-
ject of an action at longer viewing durations, and for atten-
tion to shift from the center of the image to smaller details
and secondary objects (Fig. 10).

7. Applications
Saliency models have proven useful for many image pro-

cessing applications, including smart cropping, retargeting,
and image captioning. Our multi-duration saliency model

Figure 7: Cropping. Images automatically cropped based
on cumulative viewing duration by selecting the window
with 90% of the most salient image regions as predicted
by our model. Image crops for shorter viewing durations
contain close-ups of key elements.

can contribute additional context by accounting for the ex-
pected time that a viewer may have to explore an image. In
this section, we discuss how multi-duration saliency can be
used to adapt existing saliency-driven applications.

Cropping: Automatic image cropping is useful for
thumbnailing, view-finding for improved composition, and
retargeting for different use cases [23]. Multi-duration
saliency allows us to additionally take into account the ex-
pected time a viewer will spend on an image (e.g., an image
that is part of a passing advertisement should contain fewer
elements than if it is the main image on a page). In Fig. 7 we
use our multi-duration saliency maps to crop windows that
capture 90% of the heatmap density that occurs at or be-
low a particular viewing duration [18]. Our automatically-
generated thumbnails contain close-ups of the most impor-
tant objects at shorter viewing durations.

Compression and rendering: Multi-duration saliency
heatmaps can indicate the order in which items in a scene
should be rendered to provide a seamless user experience.
In Fig. 8 we visualize which elements would be prioritized
at different viewing durations. To generate these visual-
izations, we used Mask R-CNN for instance segmentation
[28]. We accumulated saliency heatmap density for each
instance across time to determine which instances to pri-
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Figure 8: Compression. We visualize instance detections
that are predicted to attract gaze at different viewing du-
rations (accumulated over time). Content that is salient at
short durations could be rendered before content that be-
comes salient later.

Figure 9: Captioning. Captions generated by pass-
ing saliency-enhanced images to an image captioning
model [48], using saliency at different viewing durations to
prioritize image content.

oritize. Instances with a mean saliency score in the 90th
percentile were kept and the rest of the image was blurred
and darkened for visualization purposes.

Captioning: Image captions can facilitate search and
improve accessibility. Some recent work attempts to use
a saliency map to guide attention for captioning [21];
however the saliency model does not explicitly model
the temporal aspect of human attention. In Fig. 9, we
used our saliency predictions to focus an image caption-
ing model [48] on regions that should stand out at different
viewing durations. Removing the non-salient visual clutter
can benefit caption quality.

8. Conclusion
Guided by the insight that where you focus on an im-

age depends on how much time you have to explore it, we
tackle the problem of predicting multi-duration saliency:
saliency as a function of viewing duration. We propose a
scalable, crowdsourceable technique for gathering ground

Figure 10: MD-SEM predictions on various datasets. In-
sets contain human ground truth from CodeCharts1K. Our
model approximates human attention by shifting saliency
from faces to objects of action across time (a,c,d) and shift-
ing the center of focus from the center of the image to
secondary image regions at longer viewer durations (b,e).
Difficult cases for our model include cluttered scenes with
many objects, people, or complex actions (f,g).

truth multi-duration saliency data and use it to collect the
CodeCharts1K dataset. Our LSTM-based saliency model
is a top performer at predicting conventional saliency while
also providing predictions at multiple durations. We pro-
vided initial hints of how multi-duration saliency could be
used in applications which require prioritizing visual con-
tent, but unfortunately, your viewing time is up.
Acknowledgements: We thank our funding sources: the Van-
nevar Bush Faculty Fellowship program by the ONR (N00014-
16-1-3116) and the SystemsThatLearn@CSAIL / Ignite Grant (to
A.O). Work supported in part by cloud credits from the MIT Quest
for Intelligence.
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[12] Zoya Bylinskii, Adrià Recasens, Ali Borji, Aude Oliva, An-
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The supplement contains additional details about the
CodeCharts1K dataset, the architecture of MD-SEM, and
the effectiveness of CCM loss, as well as additional results.

1. CodeCharts Validation Procedure
Our validation procedure for CodeCharts1K was de-

signed to eliminate data from inattentive or noncompliant
participants. We follow the validation procedure in [2].
We include validation images consisting of a cropped hu-
man face on a plain background, and participants are ex-
pected to enter a code that overlaps the validation cue (the
face image). We discard data from participants who miss
more than 25% of validation images. We also discard data
from participants who look at the same spot on an image
(within a radius of 100 pixels) for at least five images in
a row, to eliminate people who consistently fixate at the
same spot. For CodeCharts1K, we collected 50 gaze points
per image per duration; after data filtering, we had on av-
erage 44 gaze points (we discarded approximately 12% of
the data). These validation procedures were implemented
for the CodeCharts1K dataset based on observations during
our pilot study on the OSIE data, which is why we see lower
inter-observer consistency (IOC) on OSIE.

2. Data analysis
2.1. Do people look in the same places?

To judge whether people look at the same image regions
at different durations, we ran a split-half consistency analy-
sis using different dataset subsets from CodeCharts1K. For
each image and viewing duration, we generate 10 splits of
participant data by resampling gaze points for a given du-

∗Equal contribution.

Figure 1. Split-half consistency of viewers, computed using Pear-
son’s Correlation Coefficient (CC), within and across viewing du-
rations on different subsets of CodeCharts1K (a-g) and on the full
dataset (h).

ration. We use these gaze points to generate a heatmap
and use it to compute the Pearson’s Correlation Coefficient
(CC) score between heatmaps at different durations. The
final numbers in Fig. 1 are produced by averaging over im-



Figure 2. People’s gaze falls on different things and “stuff” in images over time. From 0.5 sec to 3 sec, gaze frequently moves away
from people and is pulled towards objects and furniture. From 3 to 5 sec, gaze on contextual “stuff” like grass, carpet, pavement, and road
increases. COCO segmentations [1] were used for this analysis. An object in an image was assigned a score of +1, -1, or 0 depending on
whether it increased, decreased, or didn’t change in saliency from one duration to the next. These scores were added up over all the images
where the objects occurred to produce the attention scores plotted on the y-axis. Example images containing patterns of gaze change over
time for the people, road, and tv object categories are included above.

ages and splits. These results confirm that consistency is
high within participants viewing images at a particular du-
ration (diagonal entries), and that consistency is highest at
the shortest duration. Gaze patterns at 3 and 5 seconds are
frequently quite similar to each other, however. We note
that these split-half consistency analyses aggregate the gaze
points of only 18-22 participants per group as opposed to
the 44 gaze points on average in the full dataset; therefore,
the consistency numbers in Fig 1 underestimate the robust-
ness of the full data.

2.2. What is salient at what time?

We used COCO segmentation maps [1] available for the
SALICON images in our dataset to compute gaze counts per
image segment across time (Fig. 2). We compute an “atten-
tion score” per object by giving the object a score of +1 ev-
ery time it increases in saliency from one viewing duration
to the next, a score of -1 if it decreases, and 0 otherwise. We
sum these scores across the images in our dataset. The ben-
efit of this score is avoiding image-specific saliency scale
differences. We find that from 0.5 sec to 3 sec, gaze fre-
quently moves away from people and is pulled towards ob-
jects and furniture (e.g., TVs, tables, bottles, chairs, books,
etc.). From 3 to 5 sec, there is an increase of attention on
contextual “stuff” like roads, walls, windows that may con-
tain other objects. At these longer durations people notice
smaller and more distant objects in an image.

Input Output
GAP - 2048

Dense 2048 512
LSTM 512 512
Dense 512 2048

Sigmoid 2048 2048

Table 1. The architecture of temporal excitation module.

3. Model architecture
Tables 1 and 2 lay out the architecture of the custom

modules of MD-SEM. Table 1 covers the Temporal Exci-
tation Module and Table 2 covers the decoder.

4. Effectiveness of CCM Loss
The Correlation Coefficient Match (CCM) loss explicitly

encourages our network to model temporal differences in
saliency data. Table 3 shows how adding CCM to our loss
function improves the performance of MD-SEM and SAM-
MD on CodeCharts1K.

5. Additional evaluations and predictions
Fig. 3 compares predictions from MD-SEM to other

models (SAM-MD and SAMx3). Fig. 4 shows represen-
tative predictions of MD-SEM on various datasets.



Kernel Stride Dialation Output
Conv. 3 x 3 1 x 1 2 x 2 256
Conv. 3 x 3 1 x 1 2 x 2 256

Upsample - 2 x 2 - 256
Dropout (0.3) - - - 256

Conv. 3 x 3 1 x 1 2 x 2 128
Conv. 3 x 3 1 x 1 2 x 2 128

Upsample - 2 x 2 - 128
Dropout (0.3) - - - 128

Conv. 3 x 3 1 x 1 2 x 2 64
Conv, 3 x 3 1 x 1 2 x 2 64

Upsample - 2 x 2 - 64
Dropout (0.3) - - - 64

Conv. 1 x 1 1 x 1 1 x 1 3

Table 2. The architecture of the decoder.

Model NSS ↑ CC ↑ KL ↓ SIM ↑ CCM ↓
SAM-MD w/o CCM 2.700 0.744 0.434 0.616 0.231
SAM-MD w/ CCM 2.739 0.753 0.458 0.609 0.198
MD-SEM w/o CCM 2.778 0.754 0.565 0.598 0.228
MD-SEM w/ CCM 2.915 0.765 0.430 0.620 0.195

Table 3. MD-SEM results on CodeCharts1K with and without
CCM loss. We report performance on NSS, CC, KL, SIM and
our custom CCM loss. These results correspond to the average
over all durations.

In Table 4, we show MD-SEM performance on the dif-
ferent datasets that compose CodeCharts1k. Our model per-
forms well in situations with humans and memorable ob-
jects, but struggles in images with uncommon scenes, com-
plex actions or out-of-context objects, as the attention pat-
terns are more affected by higher-level cognitive effects.
These results highlight potential directions for future work.

Dataset NSS ↑ CC ↑ KL ↓ SIM ↑
Stanford-Actions 2.698 0.710 0.493 0.594
EyeCrowd 2.728 0.765 0.434 0.611
Out-of-context + Abnormal 2.767 0.755 0.432 0.613
SALICON 2.908 0.758 0.447 0.613
CAT2000 3.090 0.791 0.373 0.646
LaMem 3.118 0.796 0.388 0.643

Table 4. MD-SEM results on the different sub-datasets that com-
pose CodeCharts1K.

6. Applications
Fig. 5 contains examples of how multi-duration saliency

heatmaps can be used to crop parts of an image that are
salient at different times. Fig. 6 shows how multi-duration
saliency can be used to select which elements in an image
should be rendered first (or at higher resolution). Fig. 7 con-

Figure 3. Comparison of saliency predictions from MD-SEM,
SAM-MD and 3 SAMs individually trained to predict saliency at
different durations. (a) Our model approximates shifts in attention
more consistently on longer durations than SAMx3 and SAM-MD,
here capturing the focus on the horse at longer durations in a more
precise manner. (b) SAMx3 and SAM-MD struggle to generate
precise heatmaps, while our model accurately predicts the focus
in attention on the berry at 3 and 5 seconds. (c) While SAMx3
and SAM-MD correctly predict some punctual attention spots (top
right corner at 3 seconds), they fail to recognize that gazes tend to
return to the initial object of attention on longer durations.

tains additional examples of how multi-duration saliency
can be used to generate captions that pick up on additional
objects or focus on salient parts of an image.
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Figure 4. Saliency predictions of MD-SEM on various datasets. Insets with blue borders contain human ground-truth gaze locations
collected using our CodeCharts UI. In all cases, we see that our model has learned to make distinctively different predictions for the
different viewing durations. The model learns to start either more centrally or by focusing on the main actor in the scene in the first 0.5 sec.
With longer viewing durations the model’s predictions move towards other salient image elements that are smaller or more distant from
the center. We can see a failure mode of our model on the large crowd of people in the right column, as our model struggles to determine
who to focus on. We see another two difficult cases in the last two rows of the same column, where the model needs semantic knowledge
to correctly distribute attention to objects that are out of place.



Figure 5. Example crops generated based on saliency maps for
different viewing durations. The original images appear on the
left. On the right we show the predicted saliency heatmap, along
with the 90% bounding box, for each duration (top row) and the
resulting cropped image (bottom row). Crops for 0.5 seconds tend
to focus on a single highly salient object or point, while crops at
longer durations expand to include other parts of the image such
as the background or the object of the action.

Figure 6. Examples of how multi-duration saliency can be applied
to compression and rendering. The original images appear on the
left. On the right we show the segmentation maps of instances
with saliency scores in the 90th percentile based on the cumula-
tive saliency map for that duration (top row) and a visualization of
those salient objects (bottom row). Objects that are highly salient
at 0.5 or 3 seconds could be rendered before objects that become
salient later.



Figure 7. Examples of how multi-duration saliency can be applied
to captioning. The captions corresponding to saliency-enhanced
images for different durations can sometimes produce different
captions by refocusing attention on relevant areas in a scene.


