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ABSTRACT
Infographics are engaging visual representations that tell an in-
formative story using a fusion of data and graphical elements.
The large variety of infographic design poses a challenge for
their high-level analysis. We use the concept of Visual Infor-
mation Flow (VIF), which is the underlying semantic structure
that links graphical elements to convey the information and
story to the user. To explore VIF, we collected a repository
of over 13K infographics. We use a deep neural network to
identify visual elements related to information, agnostic to
their various artistic appearances. We construct the VIF by
automatically chaining these visual elements together based
on Gestalt principles. Using this analysis, we characterize
the VIF design space by a taxonomy of 12 different design
patterns. Exploring in a real-world infographic dataset, we
discuss the design space and potentials of VIF in light of this
taxonomy.
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INTRODUCTION
Infographics are visual representations consisting of graphical
elements and data components designed to convey an infor-
mative narrative. The way they combine visual elements and
text into an organic story is essential to effectively convey
their message. Unlike other visual media, such as interactive
story boards [26] or data-driven video [1], infographics use
static graphical elements, text, and notable embellishments,
designed to help readers easily interpret the story. Understand-
ing how these elements can be combined effectively can help
create better infographics designs as well as guide the general
visual organization of a story.

The design of infographics encompasses various creative
means, making analysis of their visual design space difficult,
mainly due to two aspects. First, infographics are composed
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Figure 1. Examples from the analysis of our infographic repository, with
the extracted visual information flows shown on the right of each info-
graphic.

of various visual elements with diverse appearances, such
as icons, images, embellishments, or text. Skillful graphic
designers usually create them with an aesthetic and creative
mindset, often injecting them with personality and style (e.g.,
cute, powerful, or romantic style) to achieve a certain atmo-
sphere. Artists may also distort certain design elements (e.g.,
exaggerating the theme figures) to emphasize them. Second,
the spatial arrangement of these visual elements is carefully
chosen to convey a unique idea to the audience. Therefore,
the arrangements are generally diverse, and do not necessarily
follow a well-known structure.

In this work, we introduce the concept of Visual Information
Flow (VIF), the underlying semantic structure that links the
graphical data elements to convey the information and story
to the user, as a means to understand visual organization of
stories. We explore VIF in a broad range of infographics,
with the goal of understanding the design space and common
patterns of information flow, and ultimately supporting better
infographics design, especially for novices. To tackle the chal-
lenges of diverse designs and arrangements in infographics,
we leverage advances in automated image understanding. We
collected a repository of around 13K design-based infograph-
ics and trained a neural network to locate the visual elements.
We automatically construct the VIF from these visual elements
using Gestalt principles that are often used by designers for
effective visual communication.

https://doi.org/10.1145/3313831.3376263


Our method is able to extract VIF from a wide variety of
infographics designs with various artistic decorations. Using
the extracted VIFs of thousands of infographics, we are able
to characterize the design space and present a taxonomy of
VIF patterns as well as explore and analyze the collected
infographics from different perspectives. As such, our main
contributions are as follows:

• A method for the breakdown of infographics and the con-
struction of its VIF from automatically detected elements

• A taxonomy of main VIF design patterns and exploration
of the VIF design space

• A system that supports infographic search according to VIF
patterns

• A large dataset of 13,245 infographic templates, out of
which 4300 include annotated boundary boxes of elements,
and a dataset of 965 infographics with real data.

RELATED WORK
Recently, several works have introduced data-driven analysis
of large-scale datasets as a way to explore design spaces. For
example, using a repository of existing webpages as input,
Kumar et al. [25] explore their rendering styles. Liu et al. [27]
mine UI design patterns via code-and vision-based analysis
in mobile applications. In our work, we learn and analyze the
VIF of a large number of infographics in a data-driven manner.
Our work shares some similarity with emerging research on
data-driven design and story telling in the field of HCI.

Infographics. Infographics have gained increasing interest
among researchers recently. Bateman [3] showed that embel-
lished charts do not reduce accuracy but increase memorability
compared to plain charts. Haroz [17] examined how simple
pictographic embellishments affect viewer memory, speed,
and engagement within simple visualizations. Borkin et al. [5]
conducted experiments to understand what makes infograph-
ics effective and memorable. Harrison et al. [18] showed that
people can form a reliable first impression of an infographic
in a relatively short time, and then studied the different design
factors that influence this first impression.

Since the advent of deep neural networks (DNN), more and
more works built on their strength to learn from large scale
data. Bylinskii et al. [9] developed a model to extract textual
and visual elements from an infographic that is representa-
tive of its content. Using a large collection of crowd-sourced
clicks and importance annotations [23] on hundreds of de-
signs, Bylinskii et al. [10] built a model to predict the visual
importance of graphical elements in data visualizations. Zhao
et al. [38] proposed a deep ranking method to understand
the personality of graphic design directly from online web
repositories.

In our work, we take advantage of DNN, Gestalt principles,
and a large collection of data to study another essential aspect
of infographics, visual information flows. Unlike previous
work that tracked and studied users’ reactions to infographics,
such as attention [23] and memorability [5], our exploration
of VIF aims to learn the design patterns from the perspective
of infographics creators rather than end users.

Visual Information Organization. The importance of a good
organization of information, visual information in our case, in
story-telling is well recognized [6, 7]. Design patterns of orga-
nizing visual information have been studied in various forms.
Siegel and Heer [34] analyzed 58 narrative visualizations and
characterized seven distinct genres of narrative visualization,
including comics, animation, slide show, and more. Via a
survey of 263 timelines, Brehmer et al. [8] revisited the design
of timeline in story telling and identified 14 design choices
characterized by three dimensions: representation, scale, and
layout. Looking at comics, Bach et al. [2] performed a struc-
tural analysis of comics and introduced design-patterns for
rapid storyboarding of data comics. For slide shows, Hull-
man et al. [21] performed an analysis of 42 slideshow-style
narrative visualizations and studied how sequencing choices
affect narrative visualization. Animation is one of the main
storytelling genres (which include video and movies) which
can be effectively used to show narration [20]. Heer et al. [19]
examined the effectiveness of animating transition to tell a
story. In interactive visual narration, McKenna et al. [30] per-
formed a crowdsourced study with 240 participants to examine
the factors that shape the dynamic information flow with users’
interactive input.

Lately, several visual authoring tools have been emerging to
facilitate the visual organization of information and improve
visual expressiveness in story-telling. Kim et al. [24] pro-
posed a method for designing graphical elements enhanced
with data. Continuing this line, Liu et al. [29] provided a
systematic framework for augmenting graphics with data, in
which designers draw vector graphics with familiar tools and
then bind the graphics with data. Wang et al. [37] presented a
visual design tool for easily creating design-driven infograph-
ics. Ellipsis [33] provided a user interface that allows users to
build visualization scenes that include annotations in order to
tell a story. Several timeline-based story authoring tools were
developed (e.g., DataClips [1] and TimeLineCurator [15]).
Recently, Chen et al. [11] developed a method to parse static
timeline visualization images using a deep-learning model to
enable further editing.

Most of these previous works focus on visual information
design in dynamic media and interactive visualizations. Our
work explores visual information flows in static infograph-
ics without user interactions, from which the distilled design
patterns can empower the design of infographics authoring
tools.

METHOD
The following section describes the methodology we used for
automatic construction and analysis of VIF in infographics.

Overview
Infographics are a composition of graphical data and artistic
elements, where the former convey the information, and the
latter make the infographic visually appealing. An effective
infographic is self-contained, meaning the whole information
is contained in one image and conveyed to the user via VIF that
connects the visual elements. Often, pieces of information are
organized into visual groups, which are compound graphical



data elements for multi-facet information, e.g., an icon, a
subtitle, or a textbox. A visual group usually illustrates the
content using symbolic graphical depictions as well as textual
details (Figure 2).

(a) (b)( ) (b)

Visual Group

Figure 2. Infographics Model: (a) an infographic example. (b) sepa-
rating the artistic decorations, the visual information flow of the info-
graphic connects the visual groups of data elements in narrative order,
hinted by explicit graphics (e.g., digits here) and implicit Gestalt princi-
ples.

The variety of artistic elements is rich, and the visual groups
turn out to have very different styles, even within a single
infographic. They may use different icons, color palettes,
font families, graphics, and texts. To ease the parsing and
the interpretation of the data, designers typically inject visual
narrative hints into the infographics to guide the readers to
effectively trace the information flow. There are two types
of hints, explicit and implicit. Explicit hints use graphical
data elements that suggest and index the flow, such as digits,
arrows, or textual descriptions. Implicit hints come from
various principles that designers follow to achieve a cohesive
design [35].

Many of these design principles, such as unity, balance, or con-
trast, are less relevant to the narrative structure. On the other
hand, the Gestalt principles of visual grouping perception [13]
provide effective guidance on visual group identification and
connection, and are very applicable in hinting the VIF. For
example, visual elements placed close to each other are more
likely to be a group (Gestalt Proximity Principle), and visual
groups designed to look similar (Gestalt Similarity Principle)
or placed to form an intuitively regular pattern (Gestalt Regu-
larity Principle [36]) are more easily recognized. We use these
Gestalt principles to automatically weave the extracted visual
elements together into visual information flows.

We use a bottom-up methodology to automatically construct
a VIF signature for a given infographic (Figure 3). The first
step is to locate the visual data elements related to the visual
information flow. Since there are various creative means to
fuse data and graphics, it is impractical to extract elements
based on heuristics alone. We use the power of machine
learning and deep neural networks for image understanding to
detect the data elements. Given a manually labeled training set,
we train a neural network and identify the visual data elements

(described in detail in subsection Data Element Extraction).
Then, we associate elements into visual groups based on the
Gestalt proximity and similarity principles, and then trace
various information flows among the visual groups based on
the Gestalt regularity principle. The constructed flows in those
trials are scored according to their regularity and the best
one is picked as the visual information flow (see subsection
Information Flow Construction). With the detected VIF, we
then explore the VIF space to create a taxonomy of VIF design.
Each VIF is associated with an icon image of uniform size,
which serves as a VIF signature. Taking their VIF signatures
as high dimensional features, infographics are embedded in
a 2D space using t-SNE. Based on this embedding, a semi-
automatic classification process is performed for the main
design patterns (see subsection Design Pattern Exploration).

InfoVIF Dataset
Several studies created infographic datasets from visual con-
tent platforms, such as Flickr or Visually, for various purposes
(e.g., [10] [32]). To the best of our knowledge, the single
public available dataset related to infographics is MassVis1.
This dataset is a collection of graphical designs from multiple
sources, e.g., magazines, government reports, etc. However,
many of the images in MassVis are highly specialized, e.g.,
illustrating scientific procedures or presenting statistical charts.
In this work, we focus on more general infographics that are
not customized for a particular range of subjects or domains.

We collected a large dataset of over 10K infographics, InfoVIF,
from two design resources sites for graphics, Shutterstock2 and
Freepik3. The infographics collected in InfoVIF are mostly de-
sign templates aimed to be a starting point for domain-specific
augmentations. This corpus was chosen for several reasons.
First, it has a more uniformed style of visual elements. For
example, design templates usually use the same size for each
textbox, in contrast to end-infographics. This helps alleviate
some of the technical challenges in the detection and con-
struction process of the visual elements of the infographics
as described later on. Second, the collected infographics are
contributed by various world-wide designers, and are very di-
verse in their design themes and styles. Together, they provide
a good coverage of the design space of infographics. Finally,
the infographic templates are usually used as design resources
from which people get inspired and adapt their own info-
graphic design. InfoVIF potentially serves and represents the
origin that establishes numerous end-infographics in various
domains.

We gathered a broad range of infographics for our dataset, by
searching the keyword ’infographics’ in the two mentioned
websites and pruned (i) the infographics composed of mul-
tiple subfigures; and (ii) those only with figures or texts. In
the end, 13,245 infographics were collected in InfoVIF, 68%
from Freepik and 32% from Shutterstock. InfoVIF is freely
available for academic purpose at http://47.103.22.185:8089/.

1http://massvis.mit.edu/
2https://www.shutterstock.com/home
3https://www.freepik.com/home

http://47.103.22.185:8089/
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Figure 3. VIF Construction Pipeline: using manually labeled infographics as training data, we use a deep neural network to detect visual data elements,
leaving aside artistic elements. We run multiple passes to trace and score different information flows based on Gestalt principles, and then we pick the
best one.

Data Element Extraction
For each infographic, the first step is to detach its graphical
data elements from artistic decorations. This is a classic ob-
ject detection problem. With the recent development of deep
neural networks, object detection has benefited immensely by
learning from large scale human-labeled datasets [16, 28]. We
adopt YOLO [31], one of the state-of-the-art object detection
methods, to solve the data element extraction problem.

Data elements are categorized into four main groups, text, icon,
index and arrow. Text is further distinguished by two types,
title and body text. For the index, we differentiate 18 numbers
(1 to 9, 01 to 09) and seven main indexing letters (A to G).
Arrows are discriminated in eight directions (e.g., left, left-top,
top, etc.). It ends up with 36 labels for graphical data elements
in total (see examples in Figure 4).

(a)

(b)

(c)

(d)

Figure 4. Output of Element Extraction: data elements are extracted at
high precision (a, b), with (c) false positives, e.g., the home button, and
(d) some misses, e.g., ’$’ icon.

Image Augmentation
To provide accurate training signals to the model, we randomly
selected 4,300 infographics from InfoVIF and manually an-
notated them with the 36 labels as mentioned before. Finally

from the 4,300 infographics, we got a total of 61,848 bounding
boxes and an average of 14 labels for each infographic. The
annotation dataset is also released as public data resource at
the link given before.

To alleviate the overfitting problem and help our model better
generalize during testing time, we applied two data augmen-
tation methods to the training dataset. The first is to convert
images to gray scale. The second is cropping: we first rescaled
the image from 100% to 200% with intervals of 5%, to gener-
ate a sequence of images with different sizes. For each size,
we then cropped the region with the same area as the original
image from four corners to produce different cropped images.
We discarded the cropped image if it intersects any bounding
box of the annotated elements. After augmentation, we ended
up with 25k annotated training images.

Performance
Prior to training, we randomly selected 700 manually tagged
infographics from the annotated training set and put them aside
as the test dataset for performance evaluation. The model was
trained for 70k steps using 25k infographics. We report per-
formance using the precision-recall metric. We get a mean
average recall of 0.75, and a mean average precision of 0.628
over the test dataset. Detailed precision numbers for different
elements are shown in Table 1. The precision for Numbers and
Texts are the best, reaching as high as 0.78. Figure 4(a) and (b)
show some successful extractions of data elements. However,
automatic methods like ours will always incur missed detec-
tion (e.g., the bottom icon in Figure 4(d)) or false positives
(e.g., the button detected as ’icon’ in Figure 4(c)). To aid in
the construction of visual information flow, we use the Gestalt
similarity among groups to infer the missing elements (to be
introduced later on).

Class Precision Class Precision
Number(1-9) 0.456 Number(01-09) 0.791
Body Text 0.782 Letter (A-G) 0.657
Icon 0.672 Title 0.695
Arrow 0.566 Average 0.628

Table 1. Precision of locating different data elements. The average recall
for all classes is 0.75.



Information Flow Construction
Given the extracted data elements, we construct the visual
information flow. This reverse engineering process is chal-
lenging since there are numerous possible solutions, and the
sought pattern has no fixed spatial form (Figure 1). To identify
the VIF, we rely on the Gestalt principles that implicitly guide
infographic design. These principles (elaborated below) dic-
tate the grouping of the elements and their relationships in the
VIF. The basic idea is to trace the VIF by first forming the flow
backbone (Figure 5(b)), and then expanding it by associating
nearby elements as visual groups along the backbone (Fig-
ure 5(c)). We first select an element with high priority to form
the seed of the backbone. Then we construct the flow back-
bone from the seed to other similar elements (Gestalt principle
of similarity) tracing the shortest path. With the traced flow
backbone, each of its elements is expanded to associate the
elements in its neighborhood (Gestalt principle of proximity)
to generate visual groups with similar configuration. We run
this process on different seeds and score those flows according
to the Gestalt Principle of regularity, finally picking the one
with the highest score.

(a) Detected Elements (b) Traced Backbone (c) Associated Groups

Figure 5. Flow Construction: Using the detected data elements, we first
trace the flow backbone and then associate nearby elements into visual
groups.

Gestalt Principles in VIF
We identify three Gestalt principles that are fundamental to
VIF: Proximity, similarity, and regularity.

Proximity within a group. Elements in a visual group are
usually close to each other. For example, in Figure 4(a) and
(b), the text and icon are nearby and naturally recognized as a
group. This principle guides us to search for elements in the
neighborhood when composing a visual group. The distance
between elements can be considered using three perspectives:
Euclidean distance, horizontal distance, and vertical distance.
For example, in Figure 4(c), text and icon have the closest
vertical distance, but are not close in Euclidean or horizontal
distance.

Similarity among groups. Visual groups in an infographic
are usually designed using similar visual configurations. Tak-
ing Figure 4(a) for example, the four visual groups are all
composed of an icon and texts, though the icons and texts
may not have the same design in different groups. This princi-
ple provides hints on how to grow the visual group and infer
missing detected elements into a visual group. For example,
in Figure 4(d), the bottom icon can be inferred with high
probability by considering the existence of text on the right.

Regularity across groups. Visual groups in infographics are
commonly designed with objects placed in structured, sym-
metrical, regular or generally speaking, harmonious patterns
to achieve a pleasing and interesting visual effect. Conversely,
infographics designers usually avoid crossing, or long distance
jumps in the information flow. In the following section, we
propose a set of measures to quantify the regularity of nar-
rative flow by which we score the fitness of the information
flow.

Flow Extraction
The flow construction procedure is described in the pseudo-
code shown in Algorithm 1, which consists of five operations:
(i) select seeds, (ii) trace flow backbone, (iii) compose visual
groups, (iv) amend information flow, and (v) scoring the flows.

Algorithm 1 Flow extraction algorithm
1: procedure EXTRACTFLOW
2: eleSet← set of elements
3: seedList← selectSeeds(eleSet)
4: f low← [ ]
5: top:
6: if seedList.len = 0 then return flow
7: seed← seedList.pop
8: seedAllies← seed +getSeedAllies(seed)
9: loop:

10: tempFlow← traceFlow(seedAllies).
11: vgroupList← composeGroups( f low, seedAllies, eleSet)
12: newAllies← guessEles(vgroupList, f low, eleSet)
13: if newAllies.len = 0 then
14: f low← scoreFlows( f low, tempFlow)
15: goto top
16: seedAllies← seedAllies+newAllies
17: goto loop

Select seeds. The seed is a selected data element from which
we trace a tentative backbone. We select seeds with high
potential in forming the information flow. We evaluate the
detected data elements and assign them different priorities
with the following criteria: index priority and shape similarity.

Index Priority. We prioritize elements that carry some seman-
tics that suggest an indexing order, such as numbers and letters.
Elements that contain text or icons get lower priority.

Shape Similarity. Visual elements with the same detected tag
or shape similarity are considered allies of the seed. To avoid
redundancy, we give low priority to elements that are similar
to an existing seed. Shape similarity between element i and j
is measured with:

Similarity_element = 1−max(|wi−w j|, |hi−h j|), (1)

where w and h are the width and height, respectively, of the
detected bounding box normalized to [0,1].

Trace flow. With the set of seeds and the set of similar ele-
ments (measured by Similarity_element), we construct a flow
backbone by optimizing and trading off between the following
three criteria: shortest path, regularity, and common reading
order.



Shortest Path. Empirically, to achieve a clear and efficient
visual communication, designers usually prefer to steer the
information flow using the shorter distances between elements,
to help the eye to naturally follow the elements.

Regularity. Elements are arranged in well-organized structures,
e.g., with consistent spacing, in a symmetric or Euclidean ge-
ometric layout. In this work, we use regularity as a primary
clue in tracing the flow backbone. Given a flow as a list of
points < p0, p1, ..., pn >, pi = (xi,yi), we evaluate regularity
by the standard deviations (noted as S) of four sets: line seg-
ment lengths (r1 = {|pi+1− pi|}), adjacent horizontal shifts
(r2 = {|xi+1−xi|}), adjacent vertical shifts (r3 = {|yi+1−yi|}),
and turning angles (r4 = {arc(pi+1 pi+2, pi pi+1)}). The over-
all regularity of a flow is taken as the one with best regularity
score among the four using:

Regularity = 1−min[S(r1),S(r2),S(r3),S(r4)]. (2)

Common Reading Order. Depending on the context, there are
preferred high-level reading orders, e.g., from left or right,
clockwise or counterclockwise. In this work, we take the most
common reading order to decide the flow if no explicit hints
exist, i.e., left to right horizontally, top to bottom vertically,
and clockwise in case the elements have a radial arrangement.

Compose visual groups. Visual groups grow from the data
elements that are chained along the backbone using the fol-
lowing expanding rules.

Elements in Proximity. Elements of a group are normally
placed close to each other. Given an element on the backbone
(denoted by (xm,ym)), we search for the elements in its three
principal neighbors with priority, according to basic priorities
of the backbone’s shape. That is, elements in vertical neighbor-
hood (i.e., [(xm−δx, ∗),( xi +δx, ∗)]) are searched first when
the backbone is oriented horizontally (i.e., when the standard
deviation of y-positions of elements E on the backbone is
small enough) or vice versa. Specifically:

Proximity=

{
[(xm−δx, ∗), ( xi +δx, ∗)], S(Ey)< θy
[(∗, ym−δy), (∗, yi +δy)], S(Ex)< θx

[(xm,ym)− (δx,δy), (xi,yi)+(δx,δy)], others
(3)

.

Similarity among Groups. As discussed earlier, visual groups
in infographics are usually designed with similar configuration
(Figure 6). We measure the similarity between visual group i
and j with the Jaccard coefficient:

Similarity_group =
|Ei∩E j|
|Ei∪E j|,

(4)

where E is the set of elements in the group, and two elements
are counted as equal when they are similar (Equation 1).

Amend information flow. Missing elements are inferred by
considering the remaining elements’ affinities with other com-
posed visual groups. For example, if an element is missing
in a group, we can infer the element by cross verifying in

other groups. We place the missing elements according to the
average placement of their counterparts in other groups.

Figure 6. Constructed Flow Examples: The flow backbone (black poly-
line) is traced, and visual groups (with linked lines) are associated based
on Gestalt principles, including amended elements (dashed rectangles).

Parameters and Performance
In the flow construction we use a set of parameters that we
empirically fine tune, where the detected boxes are normalized
to a canvas unit size. Two elements are considered to be similar
when Similarity_element > 0.85 (Equation 1). In searching
for elements in proximity, the flow backbone is considered as
horizontal or vertical oriented when the standard deviation of
Ey or Ex is smaller than θ = 0.1. δ is dynamically changed to
the largest distance from backbone to the nearest-K elements
(K = 3), limited up to 0.2. Two visual groups are considered
to be similar if Similarity_group > 0 (Equation 3), i.e., if they
have at least one similar element.

To evaluate the performance of our flow construction, 100 info-
graphics were randomly chosen from our inforgraphic collec-
tion. Two authors of this article worked together to construct
their flow backbones and visual groups manually as ground
truth. We then evaluate the performance of the flow con-
struction using the Jaccard Coefficient J between sets of line
segments of the constructed and ground-truth backbones. We
use the average Similarity_group between the detected groups
and the groups in the ground truth (Equation 3) to evaluate
the performance of the group associations. Using our ground
truth test set, we get an average J(backbone, ground_truth)
of 0.73, while the average Similarity_group is 0.61 without
considering the position bias in the placement of the amended
elements.

Design Pattern Exploration
Using the 13K infographics and their extracted visual infor-
mation flows, we explored the main VIF design patterns. In-
spired by the iterative method of Segel and Heer [34] for
exploration of narrative visualization designs, we adopted a
semi-automated technique to extract the VIF design patterns
from our massive dataset. The basic procedure consists of
two parts: (i) the construction of a comprehensive VIF design
space and initialization of possible design patterns, and (ii)
multiple iterations to construct a categorization of the design
patterns.

In the first part, we deployed t-SNE [12] to embed VIFs in
a 2D space. For each infographic, its flow backbone and vi-
sual group associations are rendered into an image as the VIF
signature of the infographic (see Figure 1 (left-top)). In the
VIF signature, the detected backbones are drawn with thick
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Figure 7. Space of VIF signatures: a down-sampled t-SNE projection
with six dominant VIF patterns highlighted (enumerated in Figure 9). A
local slicing of VIF signatures is given in the bottom-right.

strokes, while group connections are drawn using thinner lines
to distinguish the primary and secondary narrative orders. The
signatures of all VIFs have a uniform size of 100×100 pixels.
Therefore each infographic is represented by 10K dimensions.
To make the analysis practical, we applied Principal Com-
ponent Analysis (PCA) [22] to extract the top 50 principal
components. Taking the 50 vectors as representative dimen-
sions, the VIF signatures were projected to a 2D space using
t-SNE (Figure 7).

In the embedding space, similar VIFs are likely to be near
each other. Regions in the embedding space that are dense
suggest the existence of main VIF design patterns. We applied
DBSCAN [14] to spatially cluster VIFs, forming the seeds
of potential design patterns. The scatterplot of the identified
regions of high density served as the playground to perform
the classification. To facilitate and refine the classification, we
use an interactive selection tool as a means to examine and
define interesting VIFs. The companion video shows a session
of VIF signature space exploration.

After this exploratory data analysis, we performed an iter-
ative categorization using the VIF space. We started from
seeds with high densities, and spatially expanded them by
including neighboring VIFs. This process involved merging
similar patterns and re-categorizing divisive patterns. We con-
ducted several iterations until no more significant patterns
were found.

VIF TAXONOMY
Following the procedure described above, we identified 12
most notable VIF patterns which are shown in Figure 9. Fig-
ure 8 shows their relative prevalence in our dataset.

The VIF patterns are determined according to two main design
dimensions: backbone shape and content placement. The

backbone shape determines the main flow of elements (see
Figure 6), while the content placement refers to the way the
visual groups are arranged in relation to the backbone.

Figure 8. Relative prevalence of our 12 VIF design patterns.

Backbone Shape. Backbone shape refers to the line that most
visual groups in the narrative are aligned with. There are two
basic types, circular and linear. Circular information flows,
where visual groups are typically aligned around a central
object, are further classified by whether they are forming a
complete circle or not. VIFs designed in full circles are clock
and star. Patterns designed along an arc are bowl, dome,
left-wing and right-wing who use a part of the circum-
ference of a circle as the backbone, rotating it to different
orientations. Linear information flows arrange visual groups
along a line or a curve with explicit order. According to the
main orientation, we distinguish between horizontal linear,
for which landscape is the main example and the vertical
linear designs for which portrait conveys the VIF whose
backbone is a vertical line. Up-ladder and down-ladder
are diagonal designs in-between horizontal and vertical linear,
depending on the slope.

Content Placement. Content placement refers to the way
visual elements are arranged along the information flow in
relation to the backbone shape. In the circular category, the
content can be placed inside or outside of the backbone, re-
sulting in clock and star. In clock, the content is placed
inside or on top of the backbone, while in star, the visual
groups are spread outside the center, usually around a central
object, with much looser constraints on layout compactness
than clock. For the horizontal category, the visual groups can
be placed on the same side of the flow, or alternatively up and
down on different sides. The latter turns out to be the pulse
pattern. Similarly, in the vertical categories, visual elements
can be arranged on one side of the flow which turns out to
be the portrait pattern, or alternatively on the left and right
along the vertical flow, which turn to be the spiral pattern.

To better understand the VIF design patterns and its design
space for infographics, Figure 10 shows the spatial distribu-
tion of three representative graphical data elements, the title,
texts for content, and icons for each of the VIF patterns from
randomly sampled 2500 infographics.

We can observe the design principle of balancing [4] in these
spatial distributions. Elements in the majority of VIF patterns
(e.g., landscape, portrait, etc.) are centered or evenly
distributed both vertically and horizontally to achieve symmet-
rical balance, creating a sense of elegance or tight outlook.
Radial balance is unsurprisingly observed in a circular lay-
out, where the elements are placed circularly around a central
point. One observation in the circular layout is that icons are



Figure 9. 12 VIF Design Patterns: six main patterns highlighted in t-SNE plot and six more patterns with variance in backbone and content placement.

usually placed closer to the theme (i.e., the blank area) than
texts. We observe asymmetrical balance in VIF patterns, such
as up-ladder and down-ladder, where elements are usually
placed on one side of the flow, off-center, and the title is placed
on the opposite side of the main flow to balance the design.

Every infographic has a theme or idea that it tries to convey.
The theme can be implicitly or explicitly integrated in the
infographic. When it is explicitly integrated, it usually appears
in the form of a theme image - a single image that provides
a visual anchor, and usually displays the theme of the info-
graphic in a graphical form. With the detected VIF patterns,
we approximate the residual region as the potential location
of the theme, with a weighted guess according to the specific
VIF pattern. For example, the center region of clock is a
likely place to hold a theme image. Figure 11 shows the place-
ment of the theme image for different VIF patterns (clock,
bowl/dome, pulse and landscape from left to right).

Both in the horizontal patterns, such as the landscape or
pulse and in the vertical patterns (such as in the portrait
or spiral), the theme is usually implicitly integrated, not
often expressed by a notable thematic image. One exception
is in designing the backbone as a theme. For example, see the

rocket figure which implies a ’rising’ theme in Figure 2. Still,
a theme image can exist in the horizontal patterns, and can
be located under or on top of the horizontal flow, while in the
vertical patterns, the theme image can be found on the right or
left of the vertical flow.

For the circular and semi-circular patterns, a thematic figure is
usually explicitly integrated at the center of the circular flow,
for example, at the center of the star pattern or beneath the
dome pattern. The clock pattern can show both implicit and
explicit integration. In rounded regions of the clock pattern,
the thematic figure is usually centered to emphasize the topic
visually. In other cases, the center is left blank to avoid the
attention from being attracted by the center.

VIF-EXPLORER
We developed a prototype tool, VIF-Explorer, that enables
searching infographics according to their VIF patterns. Using
the tool, infographics can be searched according to a selected
or drawn VIF pattern. In addition, given a specific infographic,
other infographics with similar VIF patterns can be retrieved
according to their proximity to the selected infographic in the
t-SNE projection space. Also, the system supports searching
infographics with specified content, such as the number of
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Figure 10. Spatial distribution of title, texts and icons computed from
2500 randomly selected infographics. Note that all infographic are nor-
malized into a uniform size.

Figure 11. Theme Location: the theme image is usually placed in the
center of circular patterns, e.g., clock, bowl and dome shown on the
left. For linear patterns, while it is less common to have a theme image,
if exist, it is placed by shifting the backbone as can be seen in the two
images on the right.

visual groups, or whether the infographic includes a specific
narrative index. A demonstration of VIF-Explorer is given in
the accompanied video. To try the search engine, please visit
http://47.103.22.185:8088.

ANALYSIS OF VIF FROM DIVERSE WEBSITES
Our taxonomy of VIF patterns stems from a large design-based
infographic dataset as described in the Method section. To
examine the coverage and variety of VIF designs that may
appear on the Web, we examined our taxonomy with a second
set of infographics telling real data stories on various web-
sites. We collected data of general infographics by searching
with the keyword ’infographics’ on Google Image Engine4

which retrieves images from various websites. In addition, we
also looked at infographics designed for specific domains by
searching with keywords ’infographics’ together with ’health’
in pinterest5. For both entries, we discarded images that are
clearly not infographics, such as those only with text or only
4https://images.google.com
5https://www.pinterest.com/

graphics, as well as design-based templates without a data
story. A total of 965 data-based infographics were collected.

We conducted a multi-pass manual coding of the 965 info-
graphics to identify their VIFs. An interdisciplinary team
involving an infographic designer and two authors of this ar-
ticle participated in the coding. In the first pass, each coder
went over all the infographics independently and categorized
them into 13 categories, the 12 main VIF patterns and one
extra category as ’others’. In the second pass, the three coders
met and discussed the coding. They consolidated the coding
of 12 main VIF patterns by resolving any conflicts. For the
infographics categorized into the ’others’ category, they exam-
ined each one by one to understand why they did not fit any
category.

Results of the manual coding revealed that 619 (64.1%) in-
fographics were identified with clear VIF patterns. Among
those, spiral and clock are the two most used ones, with
(32.3%) and (21.0%), respectively. Portrait is the third with
(19.9%), followed by star (8.4%) and landscape (5.8%).

Figure 12. Distribution of 12 VIF patterns identified within 619 Info-
graphics, out of 965 infographics in total (64.1%).

As shown in Figure 12, this distribution of VIF patterns is
mostly consistent with our observations of the major VIF pat-
terns found in the main InfoVIF analysis (Figure 8). There
are dominantly more vertical VIF designs (portrait and
spiral) than landscape (landscape and pulse), which
might be due to the tendency of documents to be designed
and printed in portrait mode. Compared to pure portrait,
spiral is more popular in applications, which might be ex-
plained by its more interesting visual pattern. In those end-
infographics, pulse is surprisingly less used than dome or
bowl.

Looking at the 346 infographics in the "others" category, we
found that 139 of them (14.4% of the entire corpus) are com-
pound infographics, meaning that they are composed of several
parts and include two or more of the 12 VIF or graphical pat-
terns (see examples in Figure 13(a)). 20 infographics (2.1% of
the entire corpus) are designed with a specific visual informa-
tion flow, that was not included in our taxonomy (Figure 13(b)).
187 infographics (19.4% of the entire corpus) were found with
no distinct order to read (i.e., no VIF). Looking at this group,
out of the 187 infographics, 90 are designed in a regular grid
layout (see Figure 13(c)), where visual groups are designed
with highly uniformed style (e.g., icons in uniform size and
texts with the same font) and a regular arrangement. The other
97 infographics are designed without a detectable VIF as can
be seen for example in Figure 13(d). Without obvious hints,
the readers are free to navigate within the infographics.

http://47.103.22.185:8088/
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Figure 13. Examples of infographics that do not fall within the 12 pat-
terns of our taxonomy: (a) compound infographics composed of several
VIFs; (b) infographics with out of the box information flows; (c) info-
graphics without a VIF, designed in a regular grid layout; (d) infograph-
ics flexibly designed without a reading flow.

DISCUSSION
Our taxonomy includes 12 prominent VIF patterns from a
broad range of infographics. However, as we saw in the pre-
vious section, this taxonomy is not exhaustive, and there are
many infographics that cannot be classified within any of these
12 VIF patterns. As Figure 13(a) shows, compound infograph-
ics are often designed as dashboards, and consist of multiple
parts. The analysis of the 139 compound infographics in the
Website dataset, suggests that designers commonly use subti-
tles, dashed lines, or background colors to visually partition
infographics into parts, each of which is designed with a single
VIF pattern. In our work, we focus on studying standalone
VIFs. One possible research direction in the future is to look
into the compound infographics and study how different VIFs
are composed together. Besides the structure of visual objects
(which we focused on in this work), other visual factors, such
as color distinguishing parts in compound infographics, could
be further considered in the flow construction.

We derived our taxonomy of major patterns from the space
of VIF signatures (Figure 7), according to the major clus-
ters. However, there are some unusual infographics with cre-
ative means, for which their visual information flow does not
conform with others (Figure 13(b)). Understanding how the
information story is narrated in such infographics would be
interesting, especially for infographics that guide readers’ at-
tention with implicit visual encodings. For example, in some
creative infographics, designers might use the artistic decora-
tion to hint the visual information flow, such as a ladder image
to indicate the up-ladder VIF pattern. How artistic elements
help with the visual information flow can be further studied in
the future.

During our exploration of VIFs with real-data infographics,
the relation between VIF design and the underlying semantics
within an infographic was empirically observed. For example,
spiral or pulse is usually used for side-to-side information
comparisons. Star is a good fit for information which is

around a central idea. While examining these ideas requires
further investigation into the semantics of infographics, which
is outside the scope of this work, we encourage follow-up
research efforts going into this direction.

With the taxonomy of VIFs, another possible follow-up work
is to apply these findings to generative tools for creating info-
graphics, for example, by providing VIF patterns as templates
for quick infographic generation, or by facilitating the info-
graphic design process with automatic completion of VIF
patterns when only a few elements are given.

CONCLUSIONS
In this paper, we introduce a method to explore visual informa-
tion flows of infographics. Through an analysis of a large scale
repository of infographics, we describe a taxonomy of visual
information flows. This analysis of unstructured and varied
images is made possible thanks to recent advances in neural
networks that have now strong competence in understanding
images, and in detecting patterns and visual elements. The
key is using tools with some preliminary ability to analyze
semantics in images. In this work, we leverage these novel
abilities to peel off the artistic graphical elements from the
data that the infographics carry. It should be stressed that the
artistic graphical layer is meant not just to be aesthetic, but
also to attract the user’s attention and to make the narrative
more pronounced. The use of Gestalt principles play a key
role allowing the inference of the latent structure of the infor-
mation flow, using a combination of the proximity, similarity
and regularity grouping principles. The Gestalt principles also
help to compensate for under (or over) detection of the basic
visual elements.

Our technique is not without limitations. There are many out-
standing infographics with overly creative means, and their
visual information flow does not form a notable pattern with
an identified flow signature. Moreover, our VIF design space
is analyzed with some user assistance; although minimal, it
inevitably injects some subjectivity into the taxonomy. Nev-
ertheless, this work promotes the key idea of mining into the
information flow in a broad range of infographics and pro-
vides an initial exploration of VIF patterns. We believe that it
opens up new avenues and encourages more research efforts in
analyzing infographics. We hope that future work will move
from analysis to synthesis, offering designers generative tools
for transferring styles and patterns from one infographics to
another as well as creating novel infographics.
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